
by C.-J. Tsai
B. Ma
Y. Y. Sham
S. Kumar
H. J. Wolfson
R. Nussinov

A hierarchical,
building-block-based
computational
scheme for protein
structure prediction

Protein folding is a hierarchical event in which
transiently formed local structural elements
assemble to yield the native conformation.
We outline the hierarchical building block
protein folding model, which is based on two
premises. First, while the local building block
elements may be unstable, they nevertheless
have higher population times than all alternate
conformations; second, protein folding
progresses through a combinatorial assembly
of these elements. In accordance with this
model, we describe a building block cutting
algorithm, implementing its rationale. Through
its automated iterative application to the
native structure we obtain an anatomy tree,
in terms of protein folding. The anatomy tree
automatically yields the most likely folding
pathway. In particular, we describe how, by
using this algorithm and the building blocks
which are obtained, we expect to reduce
substantially the computational time involved
in simulations of protein folding.

Introduction
The way in which a polypeptide chain folds to assume its
three-dimensional (3D) shape is a fascinating problem,

which is captivating to understand and solve from a purely
intellectual standpoint and also has extremely important
practical consequences. Despite the fact that for nearly
forty years it has occupied a central place in chemistry,
biophysics, and branches of the experimental and
computational sciences in general, it still presents a major
obstacle to understanding. Nevertheless, over the years
progress has been made in improving the methodology for
predicting protein structure from its sequence (e.g., [1]).

On the technical computational side, there are three
basic approaches to the prediction of protein structure:
homology modeling, threading, and ab initio folding.
Homology modeling is the method with the highest success
rate; it is highly reliable in cases where there is another
sequence, or better still, several sequences, which are
highly similar to the sequence whose structure is sought,
and the structures of these other sequences have been
solved. In the absence of such a situation, the method
of choice to try is threading, or inverse folding. Here
one “threads” the protein chain through available folds,
searching for a closely related sequence. The success in
threading is, in general, a function of the sequence
similarity. The more closely related the sequences, the
higher the chances of producing a reasonably folded chain.
The extent of sequence similarity sought in this method
is lower than the one used in homology modeling. The
details of these two methods, and their successes and
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failures, are given in a special issue of the journal Proteins,
which was devoted to the recent CASP competition
(Critical Assessment of Structure Prediction, Proteins,
Volume 37, S3, 1999). If, however, no sequence similarity
with a sequence whose structure has been solved is
available, practically the only way to predict its folded
shape is via simulations. However, unbiased simulation of
protein folding with even 36 residues in length is currently
infeasible, owing to the immense computation time
required [2].

Here we describe a hierarchical protein folding model
which makes it possible to visualize how a 1D protein
chain folds into its 3D native state. We propose
that through the application of such a model, the
computational time for folding the protein could, in
principle, be substantially reduced. We first describe
this building block folding model and its principles. Its
consistency with current experimental and theoretical
results has already been described [3, 4]. We next present
the algorithm itself, describing the procedure which is
involved. We proceed to illustrate some examples of the
anatomy trees produced through application of this

model, showing the major folding pathway for each of
these proteins. We present some of the results of the
simulations of building blocks, showing that they are
relatively stable. Finally, we describe our scheme as to
how this model could be used to substantially reduce the
computational time in folding. This part of the work is
currently in progress.

For the purpose of clarification, Figure 1 presents a
schematic flow chart of our scheme. The figure illustrates
the dissection procedure that produces the building blocks.
The process is iterative, progressively cutting the native
structure into shorter fragments by using a statistically
based scoring function which calculates the stability of
candidate building blocks [4]. This procedure has already
been implemented. All native structures in the protein
structure database (PDB) [5] have been cut, and
their building block fragments are available
(http://protein3d.ncifcrf.gov/tsai/anatomy.html).

The building block folding model: Principles
and rationale
The building block folding model is a “practical” model
for protein folding [3, 6]. The model states that protein
folding is a hierarchical process [7], and that the units
from which protein folds are constructed, i.e., the
hydrophobic folding units (HFUs), are the outcome
of a combinatorial assembly process of sets of building
blocks. The HFUs subsequently associate to produce
intramolecular domains. These, in turn, assemble to
construct an intramolecular multidomain protein fold or,
alternatively, an intermolecular quaternary structure. The
“building block” itself is defined as a highly populated,
contiguous fragment in a given protein structure. It may
be composed of a single secondary structure element or a
fragment consisting of chain-linked, interacting structural
elements, such as those observed in supersecondary
structures [8, 9]. This, however, is not the case for the
hydrophobic folding unit. Such a unit is defined as an
independent, compact, thermodynamically stable folding
unit with a buried hydrophobic core [10, 11]. The “foldon”
approach [12], in which a protein is built from an
assembly of foldons (compact, independently folding
units), also corresponds nicely to the building block
concept.

The building block folding model is based on the idea
that the native fold dictates the folding pathway. Hence,
this implies that if we were to cut the building block from
the protein chain and place it as a peptide in solution, the
most highly populated conformation of this peptide would
very likely be similar to that of the building block when it
is in the native protein fold. Still, as we see later, a major
difficulty in the protein folding prediction scheme derives
from the fact that while the conformations of most

Figure 1

Flow chart of the dissection procedure that produces the building blocks.
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building blocks are preserved in the final native folded
structure, this is not always the case. The mutually
stabilizing association among the building blocks may
result in alternate conformations being selected in
the combinatorial assembly. Hence, in such cases, the
conformations of the building blocks that we observe in
the native protein structure will differ from their original
stand-alone conformations.

Our algorithm is similar to the methods devised almost
twenty years ago by Lesk and Rose [13] and by Wodak
and Janin [14] to locate building blocks in a given protein
tertiary structure. However, in contrast to those original
methods, we do not confine ourselves to binary cuttings
of the polypeptide chain; instead, the algorithm we have
developed allows multiple dissections at each iterative
level, resulting in a descending hierarchy of contiguous
fragments. Each node in the anatomy tree is a one-
segment building block, and the entire native structure
of the protein is the starting root-node of this anatomy
tree. The locations of the building blocks correspond to
the end nodes of the top-down sprouting tree.

To be able to dissect the protein structure and create an
anatomy tree, one must utilize a scoring function that is
independent of the building block fragment size. We have
constructed such a statistically based scoring function. This
scoring function has been devised to measure the relative
conformational stability of all candidate building blocks.
This empirical fragment-size-independent scoring function
is based on three elements: measurements of compactness,
degree of isolation, and hydrophobicity. Compactness and
isolation correspond to the “classical” visual criteria of a
domain; on the other hand, hydrophobicity is well known
to be the dominant driving force in protein folding [15].
We progressively cut the protein chain into sets of
fragments with the highest stability score. Hence, at
the end of the cutting process, the resulting anatomy
tree straightforwardly yields the most likely folding
micropathway. Furthermore, while the anatomy tree itself
outlines the more probable folding routes, the minima
among the cut-out fragments yield the number of alternate
routes and their description. These are the less probable
folding pathways. Further, trapped intermediates may be
inferred. These may largely consist of misassociated,
highest-population-time building blocks, or alternate local-
minima building blocks, which are also present in our
building block fragment pool. These correspond very
nicely to experimental fragment CD and fluorescence
spectra results (e.g., [16]).

Figure 2 [17, 18] illustrates two examples of the concept
of the dissecting algorithm that progressively cuts the
protein structure into building blocks and reveals its
anatomical features. This figure presents side by side two
proteins that share a common fold; these are inorganic
pyrophosphatases (PDB codes: 2prd and 1ino). One

protein is from a mesophilic organism (2prd), and the
other is from a thermophilic organism (1ino). The melting
temperatures (and stabilities) of the two proteins are
substantially different from each other. As the figures
show, the native state topologies of both proteins are
similar; however, the sequence similarity is relatively low
(48.5%). In particular, the figures show that despite this
dissimilarity in sequence, the pattern of cutting and the
anatomy trees are similar, illustrating that topology, rather
than the details of the protein atomic interactions, largely
determines the major folding pathway of the protein. In
particular, this example further validates the notion that
the native conformation and the native interactions
present in the native state determine the folding
pathways. We return to these crucial points below.

Figure 2

Two examples of the concept of the dissecting algorithm. The two
protein structures are progressively cut into building blocks to reveal
their anatomical features. The figure presents side by side two proteins
sharing a common fold. The pair shown comprise a thermophile and its
corresponding mesophile; they are inorganic pyrophosphatases with
the PDB codes 2prd and 1ino [5], which were originally obtained from
[17] (2prd) and [18] (1ino).
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The information contained in a correct dissection of a
protein tertiary structure into highly populated or stable
building block components is likely to prove very useful:
First, this information allows analysis and assessment of

the folding complexity, i.e., classifying a protein structure
and a folding pathway in terms of sequential/nonsequential
folding in a more precise manner (Figure 3 [19] and Figure 4
[20], respectively) [21]. From the folding complexity we may
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Figure 3

Building block cuttings and anatomy tree for a simple, sequentially folding protein, the C-terminal domain of Gelatinase A (1gen): (a) fragment
map; (b) anatomy tree; (c) building block cuttings and their combinatorial assembly into hydrophobic folding units. In part (a), the x and y
coordinates represent the fragment location and size. Local minima in the map are indicated by solid circles. The associated horizontal line for each
minimum reflects its size. The detailed results of anatomy [red lines in part (a)] are given in the anatomy tree shown in part (b). Part (c) is a graphical
representation of the anatomy tree at each level. The upper row shows the results of the building block assignments and the lower row their
corresponding HFU assignments. Part (c) was obtained from the PDB [5] and was originally published in [19].
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infer the likelihood of misfolding and estimate whether
the protein is a fast or a slow folder. In particular, this
information can be obtained by analyzing the arrangement

of building blocks in the native protein fold at the
different levels of cuttings, and the way they associate with
one another. Building blocks which are critical for correct
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Building block cuttings and anatomy tree for a nonsequentially folding protein, the p-Hydroxybenzoate hydroxylase (1iux): (a) fragment map; (b)
anatomy tree; (c) building block cuttings and their combinatorial assembly into hydrophobic folding units. See Figure 3 for the corresponding
description. Part (c) was obtained from the PDB [5] and was originally published in [20].
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folding may be inferred from the anatomy tree (Figure 5
[22, 23]), and likely intermediate states resulting from their
“flipping out” during folding may be predicted. Second, the
dissection yields a dataset of protein fragments. Such a
library contains fragments ranging from complete tertiary
folds to short pieces of the chain, with their associated
favorable conformations. These provide a rich and very
useful resource for secondary structure, or for ab initio
tertiary structure prediction [24]. Third, we further
note that since partial threading has proven useful in
protein fold recognition, the availability of a complete,
nonredundant library of known contiguous fragments,
along with their likely conformations, should be
particularly helpful in the correct prediction of protein
structure.

The cutting algorithm
According to the building block folding model, the native
conformation is the outcome of a combinatorial assembly
of a set of building block fragments. In solution, the
building blocks exist in an ensemble of conformations.
Most of the associated building blocks are the stable,
high-population-time conformers. During the folding
process these conformers are preserved, and they are

observed in the final native 3D structure. Nevertheless,
as the building blocks assemble during the combinatorial
assembly process to yield higher-order structures, the
conformations which are selected are not necessarily those
that have the highest population times in solution. The
mutual stabilization of the building blocks may stabilize
those conformations which as stand-alones are less stable
and hence have lower population times. Owing to the
mutual stabilization effect, the outcome of such an
assembly process may be more stable hydrophobic folding
units than those which would have been produced by the
higher-population-time building blocks. While such a
lower-population-time building block conformational
selection scenario may occur relatively infrequently, with
more highly populated conformers usually selected during
the combinatorial assembly, it may nevertheless take place.
It is this possibility which makes protein folding ventures
so difficult.

To cut the native structure into a set of building blocks,
we have devised a scoring function which estimates the
stability of a candidate building block fragment. In order
to be truly useful, such a scoring function must be
independent of the length of the building block. The scoring
function should reflect the population time of the building
block in solution: the larger the stability, the higher the
population time. The critical point about the scoring
function is that it is size-independent. It is not biased by
the length of a fragment when estimating its stability
measurement. Therefore, two building blocks with the
same score but of different lengths are not distinguished
by the cutting algorithm.

Our goal is to locate building blocks in a native
protein structure. To do that, we must find a set of
non-overlapping fragments possessing the highest
conformational stability of all possible candidate
combinations. (In practice, a few residue overlaps between
the fragments are permitted.) For a polypeptide chain
with a size of Ne residues and with the size limit of a
building block set to Ns residues, the total number of
candidate fragments is Ntotal 5 ¥ (Ne 2 Ni 1 1), where
Ni runs the summation from Ns to Ne . Every fragment in
the sequence is specified by two independent variables:
size and position. The position of a fragment is assigned
by the residue at the center of the fragment. The two-
dimensional coordinate system (specified by the size of
the fragment and its location in the protein chain) for
all contiguous fragments in a given protein structure is a
“fragment map.” By associating with such a fragment map
a scoring function that reflects the conformational stability
of every fragment, the local minima in the map are
automatically the locations of the building blocks
of a given protein.

The scoring function has been described in detail
elsewhere [4]. It is based on a previous scoring function

Figure 5

Critical building block. Building blocks at the second level of cutting
in Saccharomyces cerevisiae adenylate kinase (PDB code 1aky [5,
22]) , with each color representing a different building block. Shown
in red is a critical building block that occurs at the N-terminus of
adenylate kinase; it contains the ancient P-loop (a.k.a. giant anion
hole) of adenylate kinase [23].
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which has been successfully applied to locate hydrophobic
folding units [10]. The hydrophobic folding unit scoring
function comprises four elements: compactness,
hydrophobicity, degree of isolatedness, and number of
segments. Since a building block has by definition only one
segment, only the first three ingredients are used here.
The new function is expressed as a linear combination
of these three measurements, with each quantity
calculated as the deviation from the averaged value of
known protein structures. The corresponding arithmetic
averages of these quantities, and the standard deviations,
are determined from a nonredundant dataset of 930
representative single-chain proteins from the protein
structure data bank [5]. We have calculated the average
and the standard deviation both with respect to fragment
size and as a function of the fraction of the whole protein
represented by the fragment. Their summation yields the
scoring function.

There are two steps in the cutting procedure (Figure 1):
In the first step, we locate a basket of building blocks (i.e.,
all relatively stable fragments). We do this by assigning a
stability score to each trial fragment and collecting a
basket of building blocks by locating all local minima on
the fragment map. In general, lower energy values imply
higher stability, and a local minimum refers to the lowest-
energy fragment in the local region. However, our scoring
function gives the more stable fragment a higher value;
therefore, we define a local minimum as the highest value
in a defined local region [4]. In the second step we
perform a recursive top-down splitting process. (The
“top” is the native structure with the cutting iteratively
progressing to smaller structural units.)

The folding process does not follow a single pathway.
Hence, in constructing an anatomy tree, we have two
goals: First, the anatomy tree should straightforwardly
yield the most likely folding pathway(s); second, the
iterative cutting process should identify the most likely set
of building blocks. These building blocks should, via a
process of combinatorial assembly, form the native protein
conformation. Thus, we organize the anatomy tree that we
construct for the protein structure as a tree which grows
upside down, with the starting root node of the native
structure at the top. Each node represents a contiguous
fragment. Via a multi-cutting procedure, multiple branches
can originate from a single node. If a new node does not
produce a child, it is an end node. The level of a node is
determined by counting the number of steps which are
needed to backtrack to the root node. The entire tree
growth process stops when no new children nodes can be
generated. The collection of end nodes is the set of the
most likely building blocks, while the tree organization
itself yields the most likely folding pathway.

Hence, in essence, our cutting algorithm sets no limit
on the number of branches at any level: Starting with a

node fragment and the basket of building blocks as
described above, we carry out the search for multiple
cutting. We sift through the basket, looking for a set of
fragments that constitute the entire node fragment. In the
search, we first allow a short overlap between building
blocks (up to seven residues); second, if an “unassigned”
segment is less than 15 residues, it is left unassigned.
Otherwise, the segment is assigned to be a low-score
building block. A short unassigned segment may be a
linker between two building blocks. A long low-score
fragment may be a conformationally unstable building
block that has opened up. Third, with the exception of
a root node, a node cannot have only one branch-child
node. Fourth, a node is considered to be an end node if
we cannot find two building blocks with scores above a
defined threshold value. This last criterion is the stopping
condition for a branch node in the recursive top-down
splitting process. Whether a node must be cut further
appears to depend on the setting of the defined threshold
value. Further description of the cutting algorithm can be
found in Tsai et al. [4].

Figures 3 and 4 represent examples of the progressive
stepwise cutting and hierarchical assembly of the building
blocks of two proteins. Figure 3 illustrates a “simple,”
sequential pattern of folding, whereas Figure 4 presents
a complex pattern. In the latter, complex folding case,
building blocks which are not adjacent to one another in
the chain are in tertiary contact, while the sequentially
intervening building blocks are flipped out, to contact
other parts of the structure. It is worth noting that the
mutual stabilization effect among building blocks has been
implicitly implemented in the cutting algorithm, with the
high scores observed for the building blocks in the top
level and low scores in the bottom anatomy level. It is
expected that the use of secondary structure information
in the scoring function may help slightly in defining a
stable building block. We did not use it in our scoring
function, since cutting in the middle of a secondary
structure, especially a b-sheet, usually produces two bad,
low-score building blocks. We further note that at each
anatomy branch, the cut building blocks undergo a
combinatorial assembly search to locate hydrophobic
folding units which are not contiguous pieces in
sequence.

Simulations of building blocks
To further explore the building blocks and their
associations, we have carried out molecular dynamics
simulations. Two types of simulations have been
performed: In the first, we have simulated some building
blocks which were obtained through the cutting
algorithm. We have chosen to simulate building blocks
with relatively low stability scores. One of these is the
fragment (Leu23–Asn53) of immunoglobulin-binding
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protein. This fragment has a cutting score of 1.3. Figure 6
shows some snapshots extracted from its trajectory. These
simulations were carried out at 273 K. As the figure
shows, even these low-stability-score building blocks are
relatively stable, implying reasonable population times.
Figure 6 further illustrates that secondary structure is not
necessarily formed prior to building block formation. This
is an important difference between the building block
folding model and the traditional hierarchical folding
model, in which secondary structures form first.

In the second type of simulation, the amino-terminal
building block has been cut out of the adenylate kinase
protein from Saccharomyces cerevisiae. This building block
(Ser1–Gly36) is a critical one (Figure 5), according
to our definition (given in the next section). The
simulation was carried out using the c27b1 version of
the CHARMM program [25]. Figure 7 provides the
structures of the initial and final conformations of
adenylate kinase in the absence of the critical building
block. As the figure shows, without this building block
the structure collapses upon itself. Hence, the two most
important points here are, first, that in the absence of
such a critical building block to mediate the interactions
of most of the other building blocks, the native
conformations of these other building blocks are retained;
and second, that what is altered here is their association
[27]. This is exactly as predicted by the building block
folding model. Such a conformation may constitute an
intermediate state.

Thus, both types of simulations consistently indicate
that whether cut from the structure and simulated as
a peptide (the first type of simulation, Figure 6), or
remaining within the structure, but with a critical building

block removed (Figure 7), the building blocks retain their
native conformations.

Above we have described the building block folding
model, the anatomy trees, and the practical procedure
generating the building blocks through a multi-cutting
process. Next, we describe how we envision its utilization
to create more efficient folding routines.

Implications of the building block folding
model for computational protein folding
Given the amino acid sequence of a protein chain,
how can we use the building block folding model to
substantially reduce computation time?

Three elements in the building block folding model are
useful: First, we have a collection of building blocks, their
sequences and their conformations, as observed in the
native structure of the proteins from which they were
derived. Furthermore, along with each building block we
have a stability score, which provides an indication of the
population time of the building block in solution. Second,
the collection of building blocks is arranged according to
the levels of the cuttings. In general, the closer to the root
of the tree, the larger are the building block sizes. Third,
through inspection of the way in which the building blocks
interact in the native structure, we can identify those
building blocks that occupy a critical position in the
structure. A critical building block is in tertiary contact
with a number of building blocks, burying an extensive
amount of nonpolar surface area in these interactions.
Further, a critical building block is involved in
nonsequential interactions; i.e., it may be inserted between
two sequentially connected building blocks, contacting
both. The most important criterion in defining a critical
building block relates to its overall mediating location.
If it were to be pulled out of the structure, the other
building blocks would alter their associations, collapsing to
yield a stable though non-native conformation (Figure 7).
Such a conformation may constitute an intermediate
structure on the folding pathway. By inspection of the
building block cuttings and the way they associate in the
native structures, the critical building blocks can be identified.

When seeking to fold a protein chain in accordance
with the hierarchical folding model, our first goal is to
dissect the sequence into building block elements. Here
our goal is twofold: Since according to this model folding
is the outcome of a combinatorial assembly of building
block fragments, we would like to cut it into as few
building blocks as possible to reduce the combinatorics of
their assembly. Further, the more stable the building block
we identify, the higher its population time, and hence the
smaller the number of alternate conformations we may
need to deal with in the combinatorial assembly. In
addition, if we could identify a critical building block

Figure 6

Snapshots from simulations of a building block (Leu23–Asn53 of
immunoglobulin-binding protein, PDB code 1bdc [5]). The peptide is
solvated with 2442 water molecules in a cubic box measuring 43 Å �
43 Å � 43 Å. The simulations were run at 273 K using DISCOVER
2.98 (MSI/Biosys) with CFF91 force field.
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directly in the sequence, the combinatorial assembly
process would be greatly shortened. This is particularly the
case if the critical building block is a stable structure,
similar to the so-called stable, high-population-time
folding nuclei. Since we have a library of building blocks,
and we are in possession of the information regarding
the cutting levels in which they are produced in their
corresponding anatomy trees, and since we also have a
library of critical building blocks, all with associated
stability scores, it appears that in principle we are well
poised to tackle this task.

In practice, in order to carry out this extremely complex
endeavor, we must be able to identify the building blocks
in the sequences. To do this, we need to extract all
available information from the collection of building
blocks in our possession. This is the step on which we are
currently focusing. We cluster the building blocks both
by their conformations, i.e., according to the root mean
squared distances between them, and by their topologies
when they are more distantly related. Additionally, we
consider their buried/exposed nature, stability, and
size. Either the actual sequences are used, or their
hydrophobic/polar (H/P) representation. In parallel,
we cluster them by their similarity in their amino acid
sequences. Here our goal is to obtain the range of variant
conformations into which similar sequences can fold. This
information will be particularly useful when alternate
conformations are assigned to a sequence of a building
block during the combinatorial assembly. Reducing the
number of building blocks and the number of alternate
conformations that each fragment can have will render the
combinatorial assembly process computationally faster.
However, we have not yet estimated their maximum
allowed numbers to make the process feasible with
current computational resources.

Conclusions
We have outlined the building block folding model
and its rationale. The model is consistent with available
experimental and computational data. This model is
attractive in that it not only provides a logical and
consistent framework for understanding protein folding,
the major folding pathways, folding kinetics, and some
potential intermediate states, but it further allows
for a reduction in computational complexity.

The first part of this task has already been carried
out. Every protein in the structure database has been
cut, and its anatomy tree, building block fragments
along with their stability scores, and major folding
pathways have been elucidated and are available
on line (http://protein3d.ncifcrf.gov/tsai/anatomy.html).
We are currently extracting the information available
in this rich collection in order to be able to apply it
to protein sequences. Through hierarchical clustering

of the building blocks at the different levels, and their
comparisons, statistical information concerning building
blocks and assembled hydrophobic folding units is
currently being derived from a representative set of
single-chain proteins.

It is particularly important to note the major difficulty
that we foresee in the proposed folding scheme. The
building blocks are conformationally fluctuating entities.
While in most cases the conformation that we observe in
the native state is the one that has the highest population
time in solution, this is not always the case. Folding
involves conformational selection. It is possible that during
the combinatorial assembly, the conformation of the
building block which is selected has a lower population
time. Hence, assigning this conformation to a similar
building block sequence during folding might result in an
erroneously predicted conformation. While in principle the
chances of such an occurrence might be estimated from
the stability scores, it nevertheless still represents a major
obstacle. Had it not been for this difficulty, there is a
reasonable chance that the folding problem might have
been solved years ago.
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